Boosting cyber-physical security

A wide array of complex systems that rely on computers — from public water supply systems and electric grids to chemical plants and self-driving vehicles — increasingly come under not just digital but physical attacks. Bruce McMillin, professor and interim chair of computer science at Missouri S&T, is looking to change that by developing stronger safeguards for cyber-physical systems (CPS), thanks to a nearly $1 million grant from the National Science Foundation.

The consequences of such attacks could be catastrophic and range from financial ruin to loss of life, says McMillin, the project’s principal investigator. And the myriad access points to such data — from smart meters and security cameras to autonomous cars and wearable devices — only exacerbate the risks.

Owl MSDND illustration“The nation’s critical infrastructure is increasingly dependent upon systems that use computers to control vital physical components,” he says.

“The research aims to ensure that such systems ‘do what they’re supposed to do’ despite an attack by building in defenses that make sure each component behaves and works well with others,” McMillin adds. “The objective: produce from untrusted components a trusted CPS that is resilient to security attacks and failures.”

Jonathan Kimball, Missouri S&T professor of electrical and computer engineering, and Rui Bo, an S&T assistant professor of electrical and computer engineering, are co-principal investigators. The research team also includes Jennifer Leopold, associate professor of computer science from S&T, and Aditya Mathur, a Purdue University computer science professor.

The project will test the more robust cyber-physical systems on a high-fidelity water treatment system as well as an electrical power test bed to align “concepts from distributed computing, control theory, machine learning and estimation theory to synthesize a complete mitigation of the security and operational threats to a CPS,” McMillin says.

“The key difference from current methods is that security holes will be identified and plugged automatically at system design times, then enforced during run time without relying solely on secure boundaries or firewalls,” he says.

The NSF grant includes an outreach component to develop educational games to introduce cyber-physical security concepts to children from kindergarten through eighth grade.

Around the Puck

“Forged in Gold: Missouri S&T’s First 150 Years”

In the 1870s, Rolla seemed an unlikely location for a new college. There were only about 1,400 residents in a community with more saloons than houses of worship. There were no paved streets, sewers or water mains. To visitors, there seemed to be as many dogs, hogs, horses, ducks and geese as humans walking the dusty streets.

[Read More...]

By the numbers: Fall/Winter 2019

[Read More...]

Bringing clean water to South America

Assessing water quality, surveying mountaintop locations and building systems to catch rainwater — that’s how members of S&T’s chapter of Engineers Without Borders spent their summer break.

[Read More...]

Geothermal goals exceeded

After five years of operation, Missouri S&T’s geothermal energy system continues to outperform expectations. S&T facilities operations staff originally predicted the geothermal system would reduce campus water usage by over 10% — roughly 10 million gallons per year. The system, which went online in May 2014, cut actual water usage by 18 million to 20 […]

[Read More...]

What happens in Vegas…may appear in print

In his latest volume of Las Vegas lore, historian Larry Gragg says it was deliberate publicity strategies that changed the perception of Sin City from a regional tourist destination where one could legally gamble and access legalized prostitution just outside the city limits, to a family vacation spot filled with entertainment options and surrounded by […]

[Read More...]