Molecular legos

A pair of Missouri S&T scientists are drawing inspiration from toy building blocks to create fixed molecular units used to speed up the material discovery process known as rational design. They’ll use these “molecular blocks” to discover materials that could be used to make highly sought solid-state lithium batteries.

“In the materials and solid-state chemistry community, there’s always a desire to make materials in a more rational, predictable way,” says Amitava Choudhury, associate professor of chemistry. “And the all-solid-state battery is a hot research area right now — it’s the holy grail of lithium batteries. The right discovery could enable the use of solid-state batteries in hybrid or full-electric vehicles, or anywhere safety predominates, because the all-solid-state versions will be less flammable than current lithium batteries.” Today’s lithium batteries are made with electrolytes composed of combustible solvents, he adds.

The discovery of new materials with the optimum chemical properties is a slow, tedious process driven by intuition and painstaking trial-and-error experiments. With funding from a $411,000 grant from the National Science Foundation’s Solid State and Materials Chemistry Program, Choudhury and Aleksandr Chernatynskiy, assistant professor of physics, hope to improve the material invention process.

The researchers plan to accelerate the discovery process by combining experiments with a theoretical modeling approach that uses fixed molecular units, which function like toy building blocks that come in various shapes and sizes and can be connected in different but predictable ways.

“Instead of using direct chemical elements in our experiments, which are very reactive at high temperatures and can result in undesired products, we’ll use pre-determined molecular building blocks, which can be connected only in certain ways that allow us to direct our results,” says Choudhury.

Chernatynskiy, a theoretical physicist, will calculate the interactions of the different molecular building blocks to predict the most stable outcomes and determine where adjustments need to be made. This will reduce repetitive experiments and save time and money in the research and development phase.

Around the Puck

Seeking TBI therapies

By Delia Croessmann, Complications from TBI can be life altering. They include post-traumatic seizures and hydrocephalus, as well as serious cognitive and psychological impairments, and the search for treatments to mitigate these neurodegenerative processes is on.

[Read More...]

Understanding the invisible injury

Students advance traumatic brain injury research By Sarah Potter, “Research is creating new knowledge.”–Neil Armstrong  Research keeps professors on the vanguard of knowledge in their fields and allows students to gain a deeper understanding of their area of study. For students and recent graduates researching traumatic brain injury (TBI) at Missouri S&T, the work […]

[Read More...]

Analyzing small molecules for big results

By Delia Croessmann, At only 28 years old, Casey Burton, Chem’13, PhD Chem’17, director of medical research at Phelps Health in Rolla and an adjunct professor of chemistry at Missouri S&T, is poised to become a prodigious bioanalytical researcher.

[Read More...]

To prevent and protect

By Peter Ehrhard, Traumatic brain injuries (TBIs) are an unfortunate but all too common occurrence during military training and deployment. Because mild TBIs often present no obvious signs of head trauma or facial lacerations, they are the most difficult to diagnose at the time of the injury, and patients often perceive the impact as […]

[Read More...]


Toughest class … ever Some of your classes may have been a breeze, but others kept you up at all hours studying, and some of you struggled just to pass. As part of his research for the S&T 150th anniversary history book, Larry Gragg , Curators’ Distinguished Teaching Professor emeritus of history and political science, asked […]

[Read More...]