Cleaning up nuclear waste … with glass

Stored in steel drums and buried in mountainsides, nuclear waste can remain radioactive for hundreds of thousands of years. Reducing the space needed to store the waste saves time and money and will reduce the overall environmental impact, says Richard Brow, Curators’ Professor of ceramic engineering.

With funding from the U.S. Office of Nuclear Energy, Brow is working to find a way to make the waste vitrify — or, turn into glass — more efficiently. Using surrogates in place of radioactive isotopes, Brow melts borosilicate glass (similar to the material Pyrex glassware is made from) and surrogates, looking for the sweet spot where a process known as phase separation and crystallization can capture the most waste in the smallest volume of a chemically stable glass. Reducing the volume could help address the nuclear waste storage problem.

Brow uses techniques developed in part by researchers in the Peaslee Steel Manufacturing Research Center at S&T.

“To understand how fast these processes occur, we will quench the melts — probably from 1,450 degrees, Celsius — at different rates to freeze in different microstructures, ranging from phase-separated droplets, known as fast quench, to fully crystallized phases, or slow quench,” he says.

It’s all to get to the point where the borosilicate glass concentrates the radioactive components into micro-phases within the glass. And when that happens, the benefits will be substantial.

“We could possibly double our waste loading,” Brow says.

Around the Puck

Q&A: Miners got game

What was the most memorable sports team during your time on campus? As part of his research for the S&T 150th history book, Larry Gragg, Curators’ Distinguished Teaching Professor emeritus of history and political science, asked you to share your memories. Here are a few of your answers.

[Read More...]

Honoring new academy members

In October, 12 alumni and friends were inducted into Missouri S&T academies. Academy membership recognizes careers of distinction and invites members to share their wisdom, influence and resources with faculty and students. Some academies hold induction ceremonies in the fall, others in the spring.

[Read More...]

Boosting cyber-physical security

A wide array of complex systems that rely on computers — from public water supply systems and electric grids to chemical plants and self-driving vehicles — increasingly come under not just digital but physical attacks. Bruce McMillin, professor and interim chair of computer science at Missouri S&T, is looking to change that by developing stronger safeguards […]

[Read More...]

MXene discovery could improve energy storage

In spite of their diminutive size, 2-D titanium carbide materials known as MXenes are “quite reactive” to water, a discovery S&T researchers say could have implications for energy storage and harvesting applications such as batteries, supercapacitors and beyond. Their findings were published in 2018 in the American Chemical Society journal Inorganic Chemistry.

[Read More...]

A faster charge for electric vehicles

One drawback of electric vehicles (EVs) is the time it takes to charge them. But what if you could plug in your EV and fully charge it as quickly as it takes to fill up a conventional car with gasoline? Missouri S&T researchers, in collaboration with three private companies, are working to make speedy charging […]

[Read More...]