‘Smart’ rocks detect bridge damage

The leading cause of bridge collapse in the U.S. is scour, an erosion process where water flow carries away river bed deposits and creates scour holes around a bridge pier or abutment. Floods intensify the problem and can quickly make the bridge unstable.

In the foreground, a passive smart rock contains a magnet suspended in liquid. In the background is a concrete-encased smart rock that is about the size of a basketball and weighs about 50 lbs.

In the foreground, a passive smart rock contains a magnet suspended in liquid. In the background is a concrete-encased smart rock that is about the size of a basketball and weighs about 50 lbs.

But gauging a bridge’s structural stability can be difficult when its foundation is buried in a riverbed, deep below the water’s surface.

Researchers at Missouri S&T are creating “smart” rocks with embedded sensors that are designed to roll near the foundation of an underwater bridge and provide accurate real-time data at the surface. They’re an easy and cost-effective tool to monitor the bridge’s structural health, says Genda Chen, the Robert W. Abbett Distinguished Chair in Civil Engineering at Missouri S&T.

“The rock follows the trail of the scour hole’s progression — as it goes deeper and deeper, the rock will also sink deeper and deeper. One reason we call it ‘smart’ is because the rock can represent the maximum depth of the hole.”

A major concern for scour monitoring is how well the technology holds up during a flood event. But the researchers are seeing good results with smart rocks installed in 2012 at Missouri’s Gasconade River Bridge and Roubidoux Creek Bridge. The rocks will last forever and the battery survives about five to 10 years, depending on how often data is collected, Chen says.

The researchers hope to partner with state departments of transportation for further studies.

Chen is working with David Pommerenke, professor of electrical and computer engineering, and Rosa Zheng, associate professor of electrical and computer engineering.

This technology (patents pending) is available for licensing through the S&T Center for Technology Transfer and Economic Development. Contact Eric Anderson at 573-341-4690 or ericwa@mst.edu.

In the foreground, a passive smart rock contains a magnet suspended in liquid. In the background is a concrete-encased smart rock that is about the size of a basketball and weighs about 50 lbs.

Around the Puck

Q&A: Miners got game

What was the most memorable sports team during your time on campus? As part of his research for the S&T 150th history book, Larry Gragg, Curators’ Distinguished Teaching Professor emeritus of history and political science, asked you to share your memories. Here are a few of your answers.

[Read More...]

Honoring new academy members

In October, 12 alumni and friends were inducted into Missouri S&T academies. Academy membership recognizes careers of distinction and invites members to share their wisdom, influence and resources with faculty and students. Some academies hold induction ceremonies in the fall, others in the spring.

[Read More...]

Boosting cyber-physical security

A wide array of complex systems that rely on computers — from public water supply systems and electric grids to chemical plants and self-driving vehicles — increasingly come under not just digital but physical attacks. Bruce McMillin, professor and interim chair of computer science at Missouri S&T, is looking to change that by developing stronger safeguards […]

[Read More...]

MXene discovery could improve energy storage

In spite of their diminutive size, 2-D titanium carbide materials known as MXenes are “quite reactive” to water, a discovery S&T researchers say could have implications for energy storage and harvesting applications such as batteries, supercapacitors and beyond. Their findings were published in 2018 in the American Chemical Society journal Inorganic Chemistry.

[Read More...]

A faster charge for electric vehicles

One drawback of electric vehicles (EVs) is the time it takes to charge them. But what if you could plug in your EV and fully charge it as quickly as it takes to fill up a conventional car with gasoline? Missouri S&T researchers, in collaboration with three private companies, are working to make speedy charging […]

[Read More...]