Preserves

The United States spends more than $8 billion annually to fix problems caused by steel corrosion in the nation’s bridges. Genda Chen, the Robert W. Abbett Distinguished Chair in Civil Engineering, is working on a solution that would prevent corrosion and increase the longevity of other steel-reinforced structures — and he’s using glass to do it.

Steel rebar bonded with an enamel coating could prevent costly corrosion that leads to billions of dollars in U.S. bridge repairs annually. The rough surface detailed at left helps the rebar form a stronger bond with the concrete it supports.

Steel rebar bonded with an enamel coating could prevent costly corrosion that leads to billions of dollars in U.S. bridge repairs annually. The rough surface detailed at left helps the rebar form a stronger bond with the concrete it supports.

“Current steel rebar supports are mainly coated with a green epoxy,” Chen says. “It works great, unless the surface gets scratched. Scratches allow moisture to seep in and become trapped between the epoxy and the steel, which actually speeds up the corrosion.”

In fact, a 2002 Virginia Tech study found that the epoxy coating only extended the corrosion service life in bridge decks five years beyond that of bare steel, Chen says.

In collaboration with Richard Brow, Curators’ Professor of materials science and engineering, Chen has developed a system to replace the green epoxy coating with a chemically bonded enamel substance — a type of glass. Chen dips the steel into the slurry of ground enamel and then bakes it at a high temperature.

“Because the coating is chemically bonded, even if it’s scratched, moisture can’t seep in” Chen says. Plus, enamel increases the rebar’s bond strength with the concrete.

Chen is testing the first generation of his work on off-shore drilling platforms in China. He hopes to begin testing in the U.S. in the next two years. In the meantime, he’s looking for new ways to bond the enamel coating to make it more uniform and easier to fabricate.

Around the Puck

Q&A: Miners got game

What was the most memorable sports team during your time on campus? As part of his research for the S&T 150th history book, Larry Gragg, Curators’ Distinguished Teaching Professor emeritus of history and political science, asked you to share your memories. Here are a few of your answers.

[Read More...]

Honoring new academy members

In October, 12 alumni and friends were inducted into Missouri S&T academies. Academy membership recognizes careers of distinction and invites members to share their wisdom, influence and resources with faculty and students. Some academies hold induction ceremonies in the fall, others in the spring.

[Read More...]

Boosting cyber-physical security

A wide array of complex systems that rely on computers — from public water supply systems and electric grids to chemical plants and self-driving vehicles — increasingly come under not just digital but physical attacks. Bruce McMillin, professor and interim chair of computer science at Missouri S&T, is looking to change that by developing stronger safeguards […]

[Read More...]

MXene discovery could improve energy storage

In spite of their diminutive size, 2-D titanium carbide materials known as MXenes are “quite reactive” to water, a discovery S&T researchers say could have implications for energy storage and harvesting applications such as batteries, supercapacitors and beyond. Their findings were published in 2018 in the American Chemical Society journal Inorganic Chemistry.

[Read More...]

A faster charge for electric vehicles

One drawback of electric vehicles (EVs) is the time it takes to charge them. But what if you could plug in your EV and fully charge it as quickly as it takes to fill up a conventional car with gasoline? Missouri S&T researchers, in collaboration with three private companies, are working to make speedy charging […]

[Read More...]