The glass that binds

Trini King

As materials for orthopedic implants, titanium-based alloys have given millions of people the opportunity to live fuller lives. But patients’ lives could be even better if the materials used to bond the implants to bone could be strengthened. Stronger bonds could mean fewer problems with the implants later in life. Trini King, BioSci’05, a naval medic for six years prior to attending UMR, has been testing materials in hopes of finding a method to improve the longevity of implants.

Working with Roger Brown, a professor of biological sciences, King spent the past semester researching the bone-bonding ability of two borate-based glasses developed at UMR and compared it to a silicate-based material currently used for titanium alloy implants. These borate-based compounds, B18P and H12, were developed for their ability to bond with titanium at the atomic level, says King. By contrast, the silicate-based glass currently used in implant procedures loses its strength, and over a period of 30 to 40 years can weaken to a point that an implant may loosen and shift.
King’s OURE project involved taking powdered forms of the glasses and soaking them in simulated body fluid for two weeks. Using infrared analysis, she then checked to see if hydroxyapatite (HAp) had formed on the glass. “Hydroxyapatite is a form of calcium phosphate and is the precursor to bone,” she explains.

The samples did form hydroxyapatite. “This is good and we know this forms bone cell characteristics,” King says.

Next, King inoculated an established line of mouse cells into a culture dish with the glass to test the bone cell growth rate and their ability to adhere to the glass. The UMR-developed borate glasses adhered firmly and had sufficient growth, but at a rate less than the silicate glass. Finally, to test whether the cells would mineralize into bone by forming the enzyme alkaline phosphatase, King put the glass samples in SaOS, a strain of cancer cells known for its ability to readily form alkaline phosphatase, and a red salt dye that would detect the bone phenotype. When King removed the samples after six days, the bone cells, dyed bright red, completely covered the glass surface.

After repeated experiments, the two borate-based glasses were shown to adhere firmly to bone cells and allow for growth, but at a slightly slower rate than the silicate-based control. King is working to publish her findings and eventually hopes to pursue a career in pathology.

By Benjamin Roodman, a senior computer engineering major and former features editor for the Missouri Miner.

Around the Puck

“Forged in Gold: Missouri S&T’s First 150 Years”

In the 1870s, Rolla seemed an unlikely location for a new college. There were only about 1,400 residents in a community with more saloons than houses of worship. There were no paved streets, sewers or water mains. To visitors, there seemed to be as many dogs, hogs, horses, ducks and geese as humans walking the dusty streets.

[Read More...]

By the numbers: Fall/Winter 2019

[Read More...]

Bringing clean water to South America

Assessing water quality, surveying mountaintop locations and building systems to catch rainwater — that’s how members of S&T’s chapter of Engineers Without Borders spent their summer break.

[Read More...]

Geothermal goals exceeded

After five years of operation, Missouri S&T’s geothermal energy system continues to outperform expectations. S&T facilities operations staff originally predicted the geothermal system would reduce campus water usage by over 10% — roughly 10 million gallons per year. The system, which went online in May 2014, cut actual water usage by 18 million to 20 […]

[Read More...]

What happens in Vegas…may appear in print

In his latest volume of Las Vegas lore, historian Larry Gragg says it was deliberate publicity strategies that changed the perception of Sin City from a regional tourist destination where one could legally gamble and access legalized prostitution just outside the city limits, to a family vacation spot filled with entertainment options and surrounded by […]

[Read More...]