‘Cloak of invisibility’ sneaks drugs into cancer cells

Doxorubicin, or DOX, is one of the most effective and widely used drugs in chemotherapy, but its current delivery mode presents challenges like drug resistance by cancer cells, lack of selective delivery to the right cells and adverse side effects.

Illustration by Sarah Martin

In a recent study, a group of S&T researchers led by Risheng Wang, assistant professor of chemistry at S&T, found that changing the shape of the DNA nanostructures that deliver the drug could improve its effectiveness.

“Shapes matter,” says Wang. “The optimization of the shape and size of self-assembled DNA nanostructures loaded with anti-cancer drugs may allow them to carry a greater quantity of the drugs, rendering them more effective.”

Wang and her team developed a new cancer drug delivery carrier from non-toxic DNA nanostructures that predicts therapeutic improvements.

“These self-assembled DNA nanostructures could serve as a ‘cloak of invisibility’ to sneak drugs into cancer cells without being detected and pumped out by cells that have already created drug resistance,” Wang says. “Compared with synthetic materials for drug delivery, DNA nanostructures are biodegradable and biocompatible, and their size, shape and rigidity can be easily manipulated, which are the features nanocarriers need.”

To test their self-assembled DNA origami, the researchers used long-term single-cell imaging, an advanced technique that shows molecular interaction, and observed the efficiency of drug delivery in breast cancer cells over a 72-hour period.

“Our results clearly show that efficient drug delivery depends on the shape of DNA nanostructures,” Wang says, “and a rigid 3-D DNA origami triangle transported more DOX in the breast cancer cell nuclei compared to the flexible 2-D DNA structures.”

Wang’s study could also lead to safer bio-tools to diagnose and treat disease.

“With proper modification, this system may also be suitable for delivery of non-drug systems, such as bioprobes for imaging and small interfering RNA (siRNA) molecules for gene therapy,” Wang says.

Around the Puck

Generous partners complete ACML fundraising

Thanks to an investment from the University of Missouri System, major gifts from industry partners and alumni support, S&T will break ground on the Advanced Construction and Materials Laboratory (ACML) on Oct. 12, during Homecoming weekend.

[Read More...]

Alumni help with sesquicentennial planning

Seven alumni, including three Miner Alumni Association board members, have been named to Missouri S&T’s sesquicentennial advisory committee. The group is made up of graduates, students, faculty, staff and community members who are involved in planning the university’s upcoming 150th anniversary celebration.

[Read More...]

Using big data to reduce childbirth risks

According to the Centers for Disease Control and Prevention, complications during pregnancy or childbirth affect more than 50,000 women annually, and about 700 of them die every year. Steve Corns, associate professor of engineering management and systems engineering, is working with researchers from Phelps County Regional Medical Center through the Ozarks Biomedical Initiative to reduce […]

[Read More...]

Bogan solves Benton mural mystery

Missouri State Capitol muralist Thomas Hart Benton wrote in his memoir about being called into then-Gov. Guy Park’s office and told that a prominent St. Louis politician objected to Benton’s portrayal of black people, especially depictions of slavery.

[Read More...]

Breaking bias

According to Jessica Cundiff, assistant professor of psychological science at S&T, women who consider careers in the physical sciences, technology, engineering and math (STEM) fields are deterred by stereotypes that impose barriers on the recruitment, retention and advancement of women in STEM.

[Read More...]

Speak Your Mind

*