Research on the fly

From U.S. Navy laboratories to battlefields in Afghanistan, researchers are lining up to explore the use of unmanned aerial vehicles to detect unexploded landmines.

Paul Manley speaks about his work with drones donating environmental research to safely identity mine locations based on plant images. Sam O’Keefe/Missouri S&T

At Missouri S&T, civil engineering doctoral student Paul Manley is using plant health to see if drones can be used to more safely locate such weapons of destruction.

Manley’s Ph.D. research builds on his master’s thesis work in biology at Virginia Commonwealth University. With the help of the MinerFly support team in Rolla, he conducts test flights at locations such as the University of Missouri-Columbia’s Bradford Research Center and the Southwest Research Center near Mount Vernon, Mo.

Since mine casings can degrade, leaching chemical compounds into the subsurface, those changes in soil properties can also be linked to the presence of unexploded landmines.

Using a hyperspectral camera mounted on the UAV, Manley collects images across hundreds of bands that can detect subtle changes in how plants such as corn and sorghum gain or lose water and nutrients, or how they biochemically respond to stress.

“As drought increases, so does the relative temperature around that area,” says Manley. “So we can use thermal imaging to see how plants are responding to drought stress. When you add in those hundreds of bands, you can really ‘see’ how the plants are responding.”

Existing landmine detection methods are far from ideal, Manley says.

“Currently, you have people walking around the minefields, leading animals on leashes, tilling up the surface to just detonate the mines and get it over with, or they are using ground-penetrating radar to detect these in the subsurface,” he says. Another device, constructed from plastic, iron and bamboo, and powered by wind, has to be replaced each time it detects a mine. And there are over 100 million unexploded landmines across the world.

“These detection methods are really slow, and they’re expensive, and they all involve people out in the minefields doing this work, so it’s dangerous,” Manley says.

His research is part of a project called “Missouri Transect: Climate, Plants and Community.” It is funded in part through S&T’s share of a five-year, $20 million National Science Foundation grant awarded to nine institutions across the state that are teaming up to better understand climate variability and its potential agricultural, ecological and social impacts.

Around the Puck

Generous partners complete ACML fundraising

Thanks to an investment from the University of Missouri System, major gifts from industry partners and alumni support, S&T will break ground on the Advanced Construction and Materials Laboratory (ACML) on Oct. 12, during Homecoming weekend.

[Read More...]

Alumni help with sesquicentennial planning

Seven alumni, including three Miner Alumni Association board members, have been named to Missouri S&T’s sesquicentennial advisory committee. The group is made up of graduates, students, faculty, staff and community members who are involved in planning the university’s upcoming 150th anniversary celebration.

[Read More...]

Using big data to reduce childbirth risks

According to the Centers for Disease Control and Prevention, complications during pregnancy or childbirth affect more than 50,000 women annually, and about 700 of them die every year. Steve Corns, associate professor of engineering management and systems engineering, is working with researchers from Phelps County Regional Medical Center through the Ozarks Biomedical Initiative to reduce […]

[Read More...]

Bogan solves Benton mural mystery

Missouri State Capitol muralist Thomas Hart Benton wrote in his memoir about being called into then-Gov. Guy Park’s office and told that a prominent St. Louis politician objected to Benton’s portrayal of black people, especially depictions of slavery.

[Read More...]

Breaking bias

According to Jessica Cundiff, assistant professor of psychological science at S&T, women who consider careers in the physical sciences, technology, engineering and math (STEM) fields are deterred by stereotypes that impose barriers on the recruitment, retention and advancement of women in STEM.

[Read More...]