Extreme bug boosts biofuel production

MelanieMormile

Dylan Courtney, a senior in chemical engineering, helped microbiologist Melanie Mormile patent a process to improve biofuel production using bacteria.

Using a microbe that thrives in extreme conditions, Melanie Mormile patented a process that could streamline biofuel production, making it less costly and reducing the reliance on fossil fuels.

Mormile, a professor of biological sciences, discovered a particular bacterium, called Halanaerobium hydrogeniformans, that thrives in high-alkaline, high-salt conditions. The bacterium can eliminate the need to neutralize the pH of the biomass, a step required in the alkali treatment of biomass to produce hydrogen fuel and other biofuels.

Mormile and her fellow researchers have been awarded two patents for developing a biofuel production process that uses the microbe.

The conventional method of biofuel production involves the steam-blasting of switchgrass and straw to separate lignin, an unnecessary byproduct, from the cellulose that is needed to create the biofuel. The process requires electricity, usually produced by either coal or natural gas, to generate the steam. That process releases considerable amounts of carbon dioxide while burning fossil fuels. The breakdown of the lignin produces compounds that inhibit fermentation and lead to lower hydrogen yields.

Treating the switchgrass and straw with an alkaline substance removes the lignin with limited formation of the harmful compounds, but the resulting slurry is highly alkaline and very salty. Before the discovery of Halanaerobium hydrogeniformans, a neutralization step was required before the fermentation process could begin. Using Mormile’s bacterium, that step can be eliminated.

“We realize this isn’t going to solve all the transportation fuel problems, but we’d like to see this develop into regionalized solutions,” Mormile explains. “Farm communities could take agricultural waste, perform the alkaline pretreatment, feed it to an onsite reactor and produce hydrogen fuel directly for use on the farm.”

Mormile studies extremophiles — life forms that exist in extreme conditions. The Halanaerobium hydrogeniformans bacterium used in Mormile’s hydrogen fuel production study came from Washington’s Soap Lake, which is unique in that it has not turned over in more than 2,000 years because of its high salinity. Its water has the same pH as ammonia and is 10 times saltier than seawater.

Around the Puck

Generous partners complete ACML fundraising

Thanks to an investment from the University of Missouri System, major gifts from industry partners and alumni support, S&T will break ground on the Advanced Construction and Materials Laboratory (ACML) on Oct. 12, during Homecoming weekend.

[Read More...]

Alumni help with sesquicentennial planning

Seven alumni, including three Miner Alumni Association board members, have been named to Missouri S&T’s sesquicentennial advisory committee. The group is made up of graduates, students, faculty, staff and community members who are involved in planning the university’s upcoming 150th anniversary celebration.

[Read More...]

Using big data to reduce childbirth risks

According to the Centers for Disease Control and Prevention, complications during pregnancy or childbirth affect more than 50,000 women annually, and about 700 of them die every year. Steve Corns, associate professor of engineering management and systems engineering, is working with researchers from Phelps County Regional Medical Center through the Ozarks Biomedical Initiative to reduce […]

[Read More...]

Bogan solves Benton mural mystery

Missouri State Capitol muralist Thomas Hart Benton wrote in his memoir about being called into then-Gov. Guy Park’s office and told that a prominent St. Louis politician objected to Benton’s portrayal of black people, especially depictions of slavery.

[Read More...]

Breaking bias

According to Jessica Cundiff, assistant professor of psychological science at S&T, women who consider careers in the physical sciences, technology, engineering and math (STEM) fields are deterred by stereotypes that impose barriers on the recruitment, retention and advancement of women in STEM.

[Read More...]