Giving contaminants the tree treatment

Detecting the presence of contaminants in soil or groundwater is now as simple as tapping a tree, thanks to technology invented at Missouri S&T.


Joel Burken, a civil and environmental engineering professor at S&T, says his process of coring tree trunks to gather small samples takes less time and costs much less than traditional methods for detecting contamination. In recent years, Burken and his colleagues have tested this method — called “phytoforensics” — at more than 30 sites in five countries and eight states.
In past tests, Burken and his students collected coring samples in vials to take back to a laboratory at Missouri S&T for analysis. Now they use a specially designed, less intrusive approach that uses a thin filament called a solid-phase microextraction fiber, or SPME, to detect traces of chemicals at minute levels, down to parts per trillion or parts per quadrillion.
“The process of core-sampling plants has been around for a while,” Burken says, “but we’re taking a new approach that will improve the process on multiple levels. Sampling is easy, fast and inexpensive for quickly identifying polluted areas or contamination patterns.”
Trees act as nature’s solar-driven sump pumps, soaking up water from the ground by using the energy of the sun and the air around them, Burken says. Through a process known as “evaportranspiration,” a tree’s extensive root system absorbs all the water it needs. At the same time, the tree absorbs trace amounts of chemicals in that water and transports it above the ground.
Tapping into several trees in an area suspected of contamination can help engineers more rapidly delineate contaminants in the subsurface. “The only damage to the site is taking a piece of the tree about the size of a pencil and just an inch long,” Burken says.
The conventional approach to testing for groundwater contamination is much more expensive, time-consuming, invasive and arduous, requiring the use of heavy equipment to drill in the ground and the creation of sampling wells to draw water from those sites, Burken says.

Around the Puck

Google electromagnetic interference

A decade from now, your smartphone won’t look anything like it does today — at least on the inside.

[Read More...]

Lecture series brings chemistry grads full circle

James O. Stoffer wanted to give Missouri S&T students a chance to learn from eminent scholars and innovators in polymer chemistry and related areas. So last fall the Curators’ Distinguished Professor emeritus of chemistry established a lecture series to showcase his former students and inspire current ones.

[Read More...]

Fueling space flight

It started with a boyhood dream of becoming an astronaut fueled from watching the 1995 Hollywood portrayal of the ill‑fated Apollo 13 lunar mission.

[Read More...]

Record gift for EWB

From clean drinking water to flood control, Missouri S&T students participating in Engineers Without Borders (EWB) are changing lives in Central and South America.

[Read More...]

Million-dollar gift supports scholarships

Steve Wunning, ME’73, has established a $1 million scholarship endowment at Missouri S&T: the Steven H. and Lyneve C. Wunning Scholarship Fund.

[Read More...]