Studying natural gas at the nano level

Natural gas is an abundant energy resource for the United States, but much of it is trapped in shale or tight-sand formations. Baojun Bai is working on a way to extract that gas by studying the energy source at the molecular level.


Bai, an assistant professor of petroleum engineering, is leading the research, which looks at how natural gas behaves in these constricted environments. Working with Bai is Yinfa Ma, Curators’ Teaching Professor of chemistry, whose single-molecule imaging system will help the researchers examine the flow properties of natural gas on a small scale.
The U.S. Geological Survey estimates that tight sands and shale formations may hold up to 460 trillion cubic feet of natural gas, enough to meet current U.S. demand for nearly 21 years. (According to the Natural Gas Supply Association, Americans consume about 22 trillion cubic feet of natural gas a year).
But Bai says that traditional methods of extracting natural gas will not work in these tight formations.
“The problem is that the pore size is so small — only a few nanometers,” he says. In conventional natural gas reservoirs, the gas flows through pores that are a few micrometers in width.
The difference between nanometers and micrometers is significant. A single nanometer is one billionth of a meter. A micrometer is one millionth of a meter. That means that a micrometer is 1,000 times larger than a nanometer.
At the nanometer scale, materials behave differently. No one really knows how natural gas flows at that level, Bai says. So he, Ma and some Missouri S&T graduate students are trying to find out.
“We want an improved understanding of how the gas flows through the pore space — specifically, how natural gas in a nanoscale pore behaves,” Bai says.

Around the Puck

Generous partners complete ACML fundraising

Thanks to an investment from the University of Missouri System, major gifts from industry partners and alumni support, S&T will break ground on the Advanced Construction and Materials Laboratory (ACML) on Oct. 12, during Homecoming weekend.

[Read More...]

Alumni help with sesquicentennial planning

Seven alumni, including three Miner Alumni Association board members, have been named to Missouri S&T’s sesquicentennial advisory committee. The group is made up of graduates, students, faculty, staff and community members who are involved in planning the university’s upcoming 150th anniversary celebration.

[Read More...]

Using big data to reduce childbirth risks

According to the Centers for Disease Control and Prevention, complications during pregnancy or childbirth affect more than 50,000 women annually, and about 700 of them die every year. Steve Corns, associate professor of engineering management and systems engineering, is working with researchers from Phelps County Regional Medical Center through the Ozarks Biomedical Initiative to reduce […]

[Read More...]

Bogan solves Benton mural mystery

Missouri State Capitol muralist Thomas Hart Benton wrote in his memoir about being called into then-Gov. Guy Park’s office and told that a prominent St. Louis politician objected to Benton’s portrayal of black people, especially depictions of slavery.

[Read More...]

Breaking bias

According to Jessica Cundiff, assistant professor of psychological science at S&T, women who consider careers in the physical sciences, technology, engineering and math (STEM) fields are deterred by stereotypes that impose barriers on the recruitment, retention and advancement of women in STEM.

[Read More...]