Natural gas: Between rock and a tight space

The United States consumes about 1.6 trillion cubic feet of natural gas in an average month. Consumption typically spikes to about 2.5 trillion cubic feet during a cold winter month.


The United States has loads of natural gas below its surfaces, but extracting it has been difficult because much of the gas is trapped in “tight” formations. The key, as it turns out, is to approach the problem at an angle.

In conventional reservoirs, interconnected pores allow gas to flow into a vertical well.

“Oil and gas are found in the empty space within rock,” explains Shari Dunn-Norman, professor of petroleum engineering at Missouri S&T. “The empty spaces are normally pores in the rock but they can also be found in natural fractures. In conventional reservoirs, interconnected pores allow gas to flow into a vertical well.”
The conventional way to extract petroleum from reservoir rock involves drilling straight down. Water and sand are injected to create an engineered fracture that enhances the flow of oil or gas. In vertical wells, a single hydraulic fracture is created to coax the hydrocarbons to flow.

drillingfornaturalg_fmt.jpg

(Illustration by James Provost)

But according to Dunn-Norman, the U.S. has large gas reserves trapped in “tight rock” called shales, which have extremely low porosity and permeability. Shale deposits are located throughout the country, from Appalachia to the Rocky Mountains.
Getting at those shale gas reserves was difficult and drilling wasn’t profitable — until a new technology was realized. Now it’s possible to drill down and then drill horizontally to contact more of the reservoir. Multiple hydraulic fracture stimulations are subsequently performed along the horizontal well. This method has unlocked the “tight gas” potential within the United States.
According to the Energy Information Administration, the U.S. has 33 trillion cubic feet of proven shale gas reserves. “But that’s only the Lower 48,” says Dunn-Norman. “Who knows what’s in Alaska? Also, this only accounts for reserves that we know are certain. It doesn’t include prospective or undrilled acreage. So the reserves from shale gas are definitely much greater.”

Around the Puck

Generous partners complete ACML fundraising

Thanks to an investment from the University of Missouri System, major gifts from industry partners and alumni support, S&T will break ground on the Advanced Construction and Materials Laboratory (ACML) on Oct. 12, during Homecoming weekend.

[Read More...]

Alumni help with sesquicentennial planning

Seven alumni, including three Miner Alumni Association board members, have been named to Missouri S&T’s sesquicentennial advisory committee. The group is made up of graduates, students, faculty, staff and community members who are involved in planning the university’s upcoming 150th anniversary celebration.

[Read More...]

Using big data to reduce childbirth risks

According to the Centers for Disease Control and Prevention, complications during pregnancy or childbirth affect more than 50,000 women annually, and about 700 of them die every year. Steve Corns, associate professor of engineering management and systems engineering, is working with researchers from Phelps County Regional Medical Center through the Ozarks Biomedical Initiative to reduce […]

[Read More...]

Bogan solves Benton mural mystery

Missouri State Capitol muralist Thomas Hart Benton wrote in his memoir about being called into then-Gov. Guy Park’s office and told that a prominent St. Louis politician objected to Benton’s portrayal of black people, especially depictions of slavery.

[Read More...]

Breaking bias

According to Jessica Cundiff, assistant professor of psychological science at S&T, women who consider careers in the physical sciences, technology, engineering and math (STEM) fields are deterred by stereotypes that impose barriers on the recruitment, retention and advancement of women in STEM.

[Read More...]